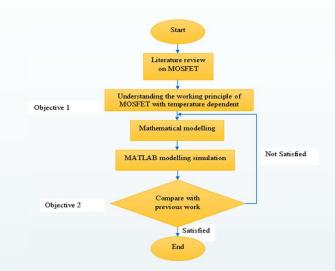
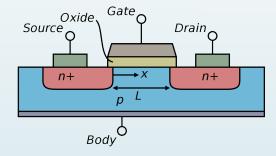
ANALYSIS OF SELF-HEATING REDUCTION ON NANOSCALE MOSFET

Introduction

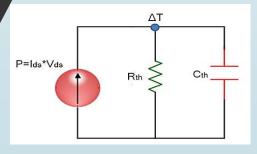

oMOS transistor channel lengths have been halved every two or three years for the past 20 years, resulting in a virtuous cycle of rising packing density (more complex electronic devices), improving performance, and lowering prices per unit silicon surface.


Problems

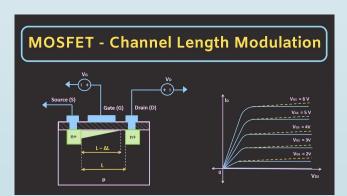
oMany factors affect the performance of the FET, such as the length, components used in, strategical structure, and many other external factors. The thermal energy generated by a current-carrying element is referred to as self-heating.

Scope of Work

oAdjusting parameters such as oxide capacitance, channel length, and other physical parameters that are temperature-dependent which lead to an increase in Thermal Resistance


Conclusion

olt is to study the effect of threshold voltage, oxide thickness, channel length, and channel width. Research on the leakage current model using MATLAB simulation to perform graph analysis.


Sample output as the parameter adjust.

SUPERVISOR: DR. KANG ENG SIEW STUDENT: KRISHNA PRASATH

Main Idea

$$I_D = \mu_{eff}. C_{ox.} \frac{W}{L}. \left(\frac{V_{GS}-V_{TH}}{2n}\right)^2. (1 + \lambda. V_{DS})$$

