DEVELOPMENT OF ACTIVE BASED SOLAR TRACKING SYSTEM

PROJECT BACKGROUND

- Solar renewable energies projects which derived from renewable resources are greatly utilised over the years.
- The emergence of solar panels has greatly reduced the supply of oil and gasoline power generation.
- The solar tracking system is useful in a variety of solar energy applications, with advantages not just in terms of power and efficiency increases over fixed systems, but also in large-scale solar energy economic studies.

Figure 6: LDR sensor set arrangement design in AADAT (Middle-Separate)

Methodology

Objectives

- 1. To design an automatically (active-based) azimuthaltitude dual axis solar tracking system
- 2. To investigate the efficiency of azimuth-altitude dual axis solar tracker system.
- 3. To maximize the solar panel output power efficiency

Problem Statements

Figure 1: Fixed Solar Panel under different condition.

Figure 7: Printed Circuit Board (PCB) Fabrication

Figure 8: Master & Slave Protocol

Figure 4: Flowchart of solar tracking system

• Shading Loss and Angle Loss

Results

Figure 9: Virtual Solar Tracker

Figure 5: Experiment of Collecting Instantaneous

Power at Each Period

Conclusion and Impact to Social, Nation, and World.

- The performance of the dual axis solar tracker system is able to be enhanced with the incorporation of robotic technology.
- fulfil the Nation Goal which is to achieve 31% Renewable Energy share in the national capacity mix by 2025, published by SEDA Malaysia
- A solar system with higher power generation could speed up the time for Return of Investment and increase the public motivation to install the solar panel.

Table 1 : Table of comparison of total instantaneous power of different solar system

Type of device		Total Instantaneous Power (mW)
Fixed Mount		67.784
Single axis solar tracker		66.6749
AADAT		68.8997
	Difference (Single VS Fixed)	-1.6362%
	Difference (AADAT VS Fixed)	1.646%
	Difference (AADAT VS Single)	3.337%

Science & Engineering Category

Grant No SUCRF/C1-2021/FEIT-11