analysis of motion simulation with ai teChnology

INTRODUCTION

EXECUTE AND ANTION SIMULATION WITH AT THE NEW THAND ANTIFE AND A CONSIDENT AND A CONSIDENT AND A CONSIDENT AND A CONSIDER THE NEW MOREOVER THE NEW THAND AND MONETA THE MOREOVER THE NEW MOREOVER THE SAME MOREOVER THE SAME NALYSIS OF MOTION SIMULATION WITH AI
 HUMANS TRODUCTION
 HUMANS TRODUCTION
 HUMANS INTERENT COLLEGE
 HUM BEEN MALYSIS OF MOTION SIMULATION WITH AI
 BEEN DUCTION
 BEEN TRODUCTION
 ENDUCTION
 ENDUCTION face and other parts of the body. Hand gestures can be divided into two categories: static and dynamic gestures. **IN STATION SIMULATION WITH AI**
 IN SOUTHERN
 IN STATION SIMULATION WITH AI
 IN SUMPLERNE A
 IN SUMPLERNE TRODUCTION SIMULATION WITH AI
 TRODUCTION CONSTRANTION WITH AI
 TRODUCTION (F³)

Humans interact with machines in a variety of ways, thus many forms of HCl (Human-Computer Interaction) has

been developed. To cont **INALYSIS OF MOTION SIMULATION WITH AI**
 TECHNOLOGY
 Algorithms. Appearance with machines in a variety of ways, thus many forms of HCl (Human-Computer Interaction) has

been developed. To control the robot, a new tech images. Meanwhile 3D model-based algorithms use volumetric or skeletal data, or even a combination of the two.

PROBLEMS A

⚬Wearable technology is facing the variety of challenges in evaluating design and algorithm, human centered design and personalization.

main idea

⚬To investigate the estimation performance variation in frequently considered fait markers, stride count, stride cadence and stride duration

⚬To learn the leap motion and how its make the use in hospitality, and also in game .

methodology

CONCLUSION

- A 3d model can be created through LEAP motion
- Leap motion also have various disadvantages.
-
-
-

NAME : LIEW ZHONG CHENG STUDENT ID: B150167C
PROJECT SUPEVISOR: Dr Vasanthan A/L Maruthanillai

ver time. Depending on the type of the input data,
gories: appearance-based and 3D model-based
ed from the silhouette or contour of the input
skeletal data, or even a combination of the two.
valuating design and algorithm, Explories: appearance-based and 3D model-based

ed from the silhouette or contour of the input

skeletal data, or even a combination of the two.

valuating design and algorithm, human

to mouse and keyboard.

ently con ed from the silhouette or contour of the input
skeletal data, or even a combination of the two.
valuating design and algorithm, human
to mouse and keyboard.
ently considered fait markers, stride count,
lity, and also in ga skeletal data, or even a combination of the two.
Skeletal data, or even a combination of the two.
Valuating design and algorithm, human
to mouse and keyboard.
Ently considered fait markers, stride count,
lity, and also in Skeletal data, or even a combination of the two.

valuating design and algorithm, human

to mouse and keyboard.

ently considered fait markers, stride count,

lity, and also in game .

Figure 1. Human motion analysis using relation of the synthesis (the motion-capture data. (C) Sensor data synthesis (here: acceleration of the synthesis (here: acceleration) using a metallical models, and also in game .

Figure 1. Human motion analysis using p relation of the sensor-body attachment model. (D) Processing of synthesize acceleration data winding of the synthesize of synthesize 1. Human motion analysis using personalized biomechanical models, simulation, and also in Acceleration design and algorithm, human

to mouse and keyboard,

ently considered fait markers, stride count,

lity, and also in game .

Figure 1. Human motion analysis using personalized biomechanical models,

simulation individual movement effects on gait markers, stride count,
ility, and also in game .
Figure 1. Human motion analysis using personalized biomechanical models,
simulation, and data synthesis to estimate warable system and ma 1
 Example 1 Considered fait markers, stride count,

lity, and also in game .

Figure 1. Human motion analysis using personalized biomechanical models,

simulation, and data synthesis to estimate wearable system and mark to mouse and keyboard.

ently considered fait markers, stride count,

lity, and also in game .

Figure 1. Human motion analysis using personalized biomechanical models,

simulation, and data synthesis to estimate warable s ently considered fait markers, stride count,

lity, and also in game .

Figure 1. Human motion analysis using personalized biomechanical models,

simulation, and data synthesis to estimate warable system and marker

perfor strate) controlled the teatre intertional system of the simulation, and data synthesis to estimate warrable system and marker
performance. (A) Illustration of the personalized biomechanical models,
simulation, and data syn lity, and also in game .

Figure 1. Human motion analysis using personalized biomechanical models,

simulation, and data synthesis to estimate warrable system and marker

performance. (A) Illustration of the personalized f Trigure 1. Humman motion analysis using personalized biomechanical models,
Figure 1. Human motion analysis using personalized biomechanical models,
simulation, and data synthesis to estimate warable system and marker
perfo Figure 1. Human motion analysis using personalized biomechanical models, simulation, and data synthesis to estimate wearable system and marker performance. (A) Illustration of the personalized full body model, extended ki Figure 1. Human motion analysis using personalized biomechanical models,
simulation, and data synthesis to estimate warable system and marker
performance. (A) Illustration of the personalized full body model, extended
with Figure 1. Human motion analysis using personalized biomechanical models,
simulation, and data synthesis to estimate wearable system and marker
performance. (A) Illustration of the personalized full body model, extended
wi Figure 1. Human motion analysis using personalized biomechanical modes,
simulation, and data synthesis to estimate warrable system and marker
performance. (A) Illustration of the personalized full body model, extended
with

simulation, and data synthesis to estimate wearable system and marker
performance. (A) Illustration of the personalized full body model, extended
with motion sensor models at upper and lower body extremities. (B) Body
kine MAMAMANA AND CONTROLLES CONTROLLES IN SURFACE SUPERISOR CONTROLLES IN A SURFACE SUPERISOR CONTROLLES IN SURFACE SUPERISOR CONTROLLES IN A SURFACE SUPERISOR OF A SURFACE SUPERISOR OF A SURFACE SUPERISOR OF A SURFACE SUPERIS